Abstract
The paper introduces a receding horizon control scheme for obtaining near-optimal controls in a feedback form for an aircraft trying to avoid a closing air-to-air missile. The vehicles are modeled as point-masses. Rotation kinematics of the aircraft are taken into account by limiting the pitch and roll rates as well as the angular accelerations of the angle of attack and the bank angle. The missile utilizes proportional navigation and it has a boost-sustain propulsion system. In the proposed scheme, the optimal controls of the aircraft over a short planning horizon are solved on-line by the direct shooting method at each decision instant. Thereafter, the state of the system is updated by using only the first controls in the sequence, and the process is repeated. The performance measure defining the objective of the aircraft can be chosen freely. In this paper, six performance measures consisting of the capture time, closing velocity, miss distance, gimbal angle, tracking rate, and control effort of the missile are considered. The quality of the receding horizon solutions computed by the scheme is validated by comparing them to the off-line computed optimal open-loop solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.