Abstract

A low-temperature multifrequency electron spin resonance (ESR) study has been carried out on Cz-(110)Si/insulator structures with organosilicate films of low dielectric constant κ grown at 300 °C using the plasma-enhanced chemical vapor deposition method (PECVD). After subjection to a short-term UV-irradiation-assisted thermal curing treatment at 430 °C to remove the organic component from the low-κ film and obtain optimal porosity, the NL8 ESR spectrum of C2v symmetry is observed, characterized by g1 (//[100] = 1.999 83(8), g2(//[011] = 1.992 74(8), g3 = (//[]) = 2.001 15(8). Based on previous insight, this reveals the generation in the c-Si substrate of singly ionized thermal double donor (TDD) defects with a core containing oxygen atoms. Remarkably, the generation is found to be highly nonuniform, and the defect density depth profile shows an exponential-like decay (decay length ∼3.8 μm) from the oxide/Si interface inward the Si substrate, thus exposing the defect formation as an interface-administered effect. Upon analysis, the strain induced by interfacial stress in the c-Si beneath the interface is suggested as the major driving component in the enhancement of TDD formation during thermal treatment, suggesting that substantial stress is involved with PECVD organosilicate low-κ glasses. The result represents a different and affirmative illustration of the influence of strain on TDD formation. Based on the principal g values, the observed TDD is closest to the NL81 type, the one formed first in bulk c-Si through oxygen agglomeration during short-term thermal treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.