Abstract

Paclitaxel is known as one of the most effective anticancer drugs. Near Infrared Spectroscopy (NIRS), a rapid, precise and non-destructive approach of analysis, has been widely used for qualitative and quantitative detection. The present study aims to analyze the plasma paclitaxel concentration with NIRS. Various batches of plasma samples were prepared and the concentration of paclitaxel was determined via high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The outliers and the number of calibration set were confirmed by Monte Carlo algorithm combined with partial least squares (MCPLS). Since NIR spectra may be contaminated by signals from background and noise, a series of preprocessing were performed to improve signal resolution. Moving window PLS and radical basis function neural network (RBFNN) methods were applied to establish calibration model. Although both PLS and RBFNN models are well-fitting, RBFNN-established model displayed better qualities on stability and predictive ability. The correlation coefficients of calibration curve and prediction set (Rc(2) and Rp(2)) are 0.9482 and 0.9544, respectively. Moreover, independent verification test with 20 samples confirmed the well predictive ability of RBFNN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.