Abstract

Diabetes Mellitus, with its rapid development and various complications that have caused it, has become one of the deadliest diseases in the world. Early detection efforts to raise blood sugar levels can help to avoid a variety of complications. Measuring devices are needed to find out blood sugar levels detect how much sugar is in the blood. The blood sugar measuring device is invasive by taking blood from capillaries tested both in the lab and using portable testing instruments. The use of this tool results in discomfort, pain, and trauma for the patient. The purpose of this study was to determine the degree of sensitivity of the NIR LED sensor on the thumb to the little finger to the reading of light reflections coming out of body tissues.. Currently, the index finger is often used as a medium to find out how much blood sugar is in non-invasive blood sugar measurements. The other four fingers' sensitivity is unknown at this time. Because the use of the index finger, which is located in the middle, can make activities difficult at times, information on the sensitivity level of the other fingers is required. This paper discusses the sensitivity of placing the NIR LED sensor on the five fingers to determine the most sensitive finger with the best response. Based on the testing results of 15 samples, Although the index finger receives the most significant stress, the correlation and linear regression tests show that the thumb has the closest relationship with the R2 = 0.6841. With this research, a test instrument with higher sensitivity for Diabetes can be developed by placing the sensor in a comfortable area. The implication is that the results of this study can be recommended to use the thumb as an alternative to the placement of the NIR LED sensor to measure blood sugar levels non-invasively in DM patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.