Abstract

Photophysical, photovoltaic, and charge transport properties of fused core-modified expanded porphyrins containing two pyrroles, one dithienothiophene (DTT) unit, and 1-4 thiophenes (1-4) were inspected by using density functional theory (DFT) and time-dependent DFT. Compounds 1-3 have been investigated experimentally before, but 4 is a theoretical proposal whose photophysical features match those extrapolated from 1 to 3. They exhibit absorption in the range of 700-970nm for their Q bands and 500-645nm for their Soret bands. The rise of thiophene rings placed in front of the DTT unit in the expanded porphyrin ring causes a bathochromic shift of the longest absorption wavelength, leading to near-infrared absorptions, which represent 49% of the solar energy. All the systems show a thermodynamically favorable process for the electron injection from the dye to TiO2 and adsorption on a finite TiO2 model. The electron regeneration of the dye is only thermodynamically feasible for the smallest expanded porphyrins 1 and 2 when I-/I3- electrolyte is used. The charge transport study shows that for voltages lower than 0.4V, junctions featuring pentaphyrin 1 and octaphyrin 4 are more conductive than those containing hexaphyrin 2 or heptaphyrin 3. The results showed that the four fused core-modified expanded porphyrins investigated are potential dyes for applications in dye-sensitized solar cells, mainly pentaphyrin 1 and hexaphyrin 2. Moreover, increasing the number of thiophene rings in the macrocycle proved fruitful in favoring absorption in the near-infrared region, which is highly desired for dye-sensitized solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.