Abstract

Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna and radar cross section (RCS) measurements for various applications. For weapon systems, most measurements are captured in the near-field area in an anechoic chamber, considering the security requirements for the design process and high spatial costs of far-field measurements. As the theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field region, a scattered wave measured in the near-field region needs to be converted into field values in the far-field region. Therefore, this paper proposes a near-field to far-field transformation algorithm based on spherical wave expansion for application in near-field RCS measurement systems. If the distance and angular coordinates of each measurement point are known, the spherical wave functions in an orthogonal relationship can be calculated. If each weight is assumed to be unknown, a system of linear equations as numerous as the number of samples measured in the near electric field can be generated. In this system of linear equations, each weight value can be calculated using the iterative least squares QR-factorization method. Based on this theory, the validity of the proposed NFFFT is verified for several scatterer types, frequencies and measurement distances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.