Abstract
Near-field scanning optical microscopy (NSOM) was used to study cleaved edges of GaAs solar cell devices. Using visible light for excitation, the NSOM acquired spatially resolved traces of the photocurrent response across the various layers in the device. For excitation energies well above the band gap, carrier recombination at the cleaved surface had a strong influence on the photocurrent signal. Decreasing the excitation energy, which increased the optical penetration depth, allowed the effects of surface recombination to be separated from collection by the pn junction. Using this approach, the NSOM measurements directly observed the effects of a buried minority carrier reflector/passivation layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.