Abstract
Purpose – The purpose of this paper is to simulate and analyze the excitation and propagation of surface plasmon polaritons (SPPs) on sinusoidal metallic gratings in conical mounting. Design/methodology/approach – Chandezon's method has been implemented in MATLAB environment in order to compute the optical response of metallic gratings illuminated under azimuthal rotation. The code allows describing the full optical features both in far- and near-field terms, and the performed analyses highlight the fundamental role of incident polarization on SPP excitation in the conical configuration. Findings – Results of far-field polarization conversion and plasmonic near-field computation clearly show that azimuthally rotated metallic gratings can support propagating surface plasmon with generic polarization. Originality/value – The recent papers experimentally demonstrated the benefits in sensitivity and the polarization phenomenology that are originated by an azimuthal rotation of the grating. In this work, numerical simulations confirm these experimental results and complete the analysis with a study of the excited SPP near-field on the metal surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.