Abstract
Bio-hybrid microrobots have been heavily studied due to their potential applications as minimally invasive medical microdevices. Though most researchers have focused on two-dimensional and near-wall motion, this letter uses a defocused optical tracking method to quantify the three-dimensional motion of 5 μm diameter polystyrene beads driven by attached Serratia marcescens bacteria. Away from walls the beads trace out helical trajectories, demonstrating kinematics produced by near-constant forces and torques. Near-wall motion is observed to be more stochastic. The motion of beads driven by single bacteria is analyzed in detail, providing an understanding of the forces and torques on the beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.