Abstract

A procedure is described for fabricating thin film Nb/Nb oxide/Pb-alloy Josephson tunnel junctions that satisfies the principal requirements for integrated circuit design and fabrication. A deposited Nb film, evaporated from an e-gun heated source, was patterned by chemical etching to form a base electrode. A junction was completed by plasma etching and plasma oxidizing the Nb junction area to form a tunnel barrier and by depositing a Pb alloy counterelectrode. Josephson tunnel junctions with Nb/Nb oxide/Pb-Au-In structures were prepared with low excess subgap currents in the current-voltage (I-V) curve and with reproducible and stable I-V characteristics. Variations in junction current density from run-run were ± 15%. Seven 3-junction interferomeeters out of a population of 50,000 were shorted (99.99% yield) for causes not immediately attributable to photoresist-related defects. No changes in Josephson current were detected after thermal cycling 17,000 interferometers 1,800 × between room temperature and 4.2°K, after storing them for 2 years at 5°C, or after annealing 5,000 interferometers for 4.5 hours at 70°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.