Abstract

Regular inspection of nuclear power plant components is important to guarantee safe operations. However, current practice is time consuming, tedious, and subjective, which involves human technicians reviewing the inspection videos and identifying cracks on reactors. A few vision-based crack detection approaches have been developed for metallic surfaces, and they typically perform poorly when used for analyzing nuclear inspection videos. Detecting these cracks is a challenging task since they are tiny, and noisy patterns exist on the components’ surfaces. This study proposes a deep learning framework, based on a convolutional neural network (CNN) and a Naive Bayes data fusion scheme, called NB-CNN, to analyze individual video frames for crack detection while a novel data fusion scheme is proposed to aggregate the information extracted from each video frame to enhance the overall performance and robustness of the system. To this end, a CNN is proposed to detect crack patches in each video frame, while the proposed data fusion scheme maintains the spatiotemporal coherence of cracks in videos, and the Naive Bayes decision making discards false positives effectively. The proposed framework achieves a 98.3% hit rate against 0.1 false positives per frame that is significantly higher than state-of-the-art approaches as presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.