Abstract

AbstractThe status and nature of water molecules in hydrogels with a liquid crystalline organization of the polymer network based on a biopolymer were investigated. Liquid crystalline (LC) hydrogels were obtained in situ by the photopolymerization of acrylic acid into the lyotropic liquid crystalline phase of (2‐hydroxypropyl)cellulose in a solvent mixture of water and acrylic acid. The photopolymerization of acrylic acid in the lyotropic liquid crystalline phase at room temperature gives a hydrogel in which liquid crystalline order and water are retained. The liquid crystalline hydrogel contains water, which originates from the composition of the lyotropic liquid crystalline phase, and may also contain water after immersion in liquid water. The water molecule characteristics were examined by means of differential scanning calorimetry, dielectric relaxation spectroscopy, and differential scanning calorimetry coupled with thermo‐optical measurements. The swelling data were obtained by using a weighing method. The investigations reveal the different nature of the two above‐mentioned water types. For the water from the composition of the lyotropic liquid crystalline phase, the phase transitions—typical for the bulk water—were not observed, in contract to the water after swelling of the liquid crystalline hydrogel in the liquid water. The results of the measurements suggest that water, which comes from the composition of the lyotropic liquid crystalline phase, forms—together with a polymer network—a microstructure, stabilized by this water. The water, after swelling of the LC hydrogel in the liquid water, is separated in the pores of the hydrogel and exhibits the phase transitions of the bulk water. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.