Abstract

. Catastrophic degradation takes place in case of reaching critical values of laser radiation density power in semiconductor lasers with electronically pumped energy made from single crystals of some compounds. It has been accompanied by mechanical destruction of the surface at resonator ends, an irreversible decrease in radiation power and an increase in generation threshold. Moreover, during the catastrophic degradation of semiconductor lasers under the action of intrinsic radiation, significant changes in the crystal structure occur within the single crystal: dislocation density reaches a value more 1012–1015 cm–2. It has been shown that initial density of dislocations and critical power density of the intrinsic radiation are inversely proportional. Thus, the degradation process of semiconductor lasers is directly related to generation and multiplication of dislocations during laser operation. Mechanical destruction of a crystal lattice occurs at critical values of laser radiation power and dislocation density. To clarify the proposed mechanism for the degradation of semiconductor lasers, it is necessary to take into account an effect of dislocations on optical properties of semiconductors. Typically, this effect is considered as follows: dislocations cause an appearance of a local deformation field and, in addition, form space-charge regions that surround a dislocation core in the form of a charged tube. The paper proposes a model of the phenomenon under study: large stresses arise in the dislocation core, leading to a displacement of individual atoms and deformation of the crystal lattice. Lattice deformation in the dislocation core leads to a local change in the width of a forbidden band. This change value is about 10–2 eV for a screw dislocation and 10–1 eV for a boundary dislocation. The mechanism of this change is that aforementioned deformation leads to a multiple rupture of electronic bonds and an increase in the electron concentration in the dislocation core to approximately value 1018 cm–3. The developed analytical model of the degradation mechanism allows to perform selection of a semiconductor and estimation of a laser operating mode under conditions of increased radiation power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.