Abstract
The continuation-ratio (CR) model is frequently used in dose response studies to model a three-category outcome as the dose levels vary. Design issues for a CR model defined on an unrestricted dose interval have been discussed for estimating model parameters or a selected function of the model parameters. This paper uses metaheuristics to address design issues for a CR model defined on any compact dose interval when there are one or more objectives in the study and some are more important than others. Specifically, we use an exemplary nature-inspired metaheuristic algorithm called particle swarm optimization (PSO) to find locally optimal designs for estimating a few interesting functions of the model parameters, such as the most effective dose ($MED$), the maximum tolerated dose ($MTD$) and for estimating all parameters in a CR model. We demonstrate that PSO can efficiently find locally multiple-objective optimal designs for a CR model on various dose intervals and a small simulation study shows it tends to outperform the popular deterministic cocktail algorithm (CA) and another competitive metaheuristic algorithm called differential evolutionary (DE). We also discuss hybrid algorithms and their flexible applications to design early Phase 2 trials or tackle biomedical problems, such as different strategies for handling the recent pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The New England Journal of Statistics in Data Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.