Abstract
In the present study, the hydrogen-bonded complexes of azole with water and hydrogen peroxide are systematically investigated by second-order Møller–Plesset perturbation theory and density functional theory with dispersion function calculations. This study suggests that the ability of pyrrolic nitrogen (NH) atom to function as hydrogen-bond donor increases with the introduction of nitrogen atoms in the ring, whereas the ability of pyridinic nitrogen (N) atom to act as hydrogen-bond acceptor reduces with successive aza substitution in the ring. With introduction of nitrogen atoms in the ring, the vibrational frequency, stabilization energy, and electron density in the σ antibonding orbitals of the X–H (X = N, C of azole) bond of the complexes all increase or decrease systematically. Decomposition analysis of total stabilization energy showed that the electrostatic energy term is a dominant attractive contribution in comparison to induction and dispersion terms in all of the complexes under study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.