Abstract

Although Hsp70, the principal inducible heat-shock protein of Drosophila melanogaster, has received intense scrutiny in laboratory strains, its variation within natural populations and the consequences of such variation for thermotolerance are unknown. We have characterized variation in first-instar larvae of 20 isofemale lines isolated from a single natural population of D. melanogaster, in which larvae are prone to thermal stress in nature. Hsp70 expression varied more than twofold among lines after induction by exposure to 36°C for one hour, with an estimated proportion of the variation due to genetic differences of 0.24 ± 0.08. Thermotolerance with and without a Hsp70-inducing pretreatment, survival at 25°C, and developmental time also varied significantly. As expected, expression of Hsp70 correlated positively with larval thermotolerance. By contrast, lines in which larval survival was high in the absence of heat stress showed lower than average Hsp70 expression and lower than average inducible thermotolerance. This conditional performance suggests an evolutionary trade-off between thermotolerance and the ability to produce higher concentrations of Hsp70, and survival in a benign environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.