Abstract

The degradation of proton beam energy within a target stack was monitored via product nuclide ratios at the Los Alamos Isotope Production Facility (LANL-IPF). Nuclear reaction channels employed as energy monitors included NatNi(p,x)57Co and NatNi(p,x)57Ni. Natural nickel foils (thicknesses 0.025 mm) were used to determine proton beam energies ranging from 15 to 30 MeV. Energy values were estimated from a fitted 57Ni/57Co production activity ratio curve, which, in turn, was calculated from formation cross section data. Isotope production yields in the low energy “C” slot at LANL-IPF are very sensitive to beam energy, and differences of several MeV can translate into a drastic effect on overall production yields and radiochemical purity. Proton energies determined in this target stack position using nickel foils will serve as a basis to optimize radionuclide production in terms of product yield maximization and by-product minimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.