Abstract

Ulcerative colitis (UC) is a chronic intestinal inflammation, resulting in a global healthcare challenge with no real specific medicine. Natural medicines are recognized as a potential clinical alternative therapy, but their applications are limited by poor solubility and low bioavailability. In this work, inspired by the natural medicines of ancient China, novel functional carbon dots derived from Magnetite and Medicated Leaven (MML-CDs) were synthesized by hydrothermal method, and confirmed their ultrasmall nano-size (3.2 ± 0.6nm) and Fe doped surface structure, thereby with excellent gastrointestinal stability, remarkable capabilities in eliminating ROS, and highly biocompatibility. With no external stimuli, the oral administration of MML-CDs demonstrated obvious alleviation to UC. Further experiments pointed that MML-CDs could improve hemostasis capability, suppress inflammation reactions and oxidative stress, and up-regulate the expression of tight junction proteins. Furthermore, MML-CDs also showed well regulation in the dysbiosis of intestinal flora. Overall, above evidence reveals that green-synthesized MML-CDs can significantly alleviate intestinal bleeding, inhibit colon inflammation, and repair colonic barrier damage, further regulating intestinal flora and intestinal inflammation microenvironment. Our findings provide an efficient oral administration of MML-CDs as a novel therapy strategy for ulcerative colitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.