Abstract

AbstractLithium sulfur (Li–S) batteries possess energy capacities well beyond those of current Li‐ion technologies, but are plagued by severe diffusion loss of sulfur intermediates and sluggish sulfur reduction kinetics. Here, the design is reported of a lepidolite‐modified polypropylene (C‐Lepidolite@PP) separator to suppress polysulfide shuttling and accelerate the transformation of polysulfides. Because the electrons of S atoms transfer to the 3p antibonding orbits of Si atoms, lepidolite effectively confines polysulfides by forming strong Si–S bonds to weaken the S–S bonds of polysulfides. The ultralow lithium‐ion diffusion barrier (0.081 eV) of lepidolite allows for free lithium‐ion migration and thus significantly facilitates polysulfide conversion from liquid Li2S8 to solid Li2S to enable fast polysulfide redox for high‐rate current operation. With the C‐Lepidolite@PP design, Li–S batteries deliver an ultrahigh rate capability of 703 mAh g−1 at 7 C and a high areal capacity of 7.53 mAh cm−2 with a sulfur loading of 6.5 mg cm−2. Moreover, the 15‐d self‐discharge rate is reduced by ≈85% with the C‐Lepidolite@PP separator, which provides promise for the practical use of Li–S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.