Abstract
Sepsis and septic shock are major concerns in public health as the leading contributors to hospital mortality and cost of treatment in the United States. Early treatment is instrumental for improving patient outcome; to this end, algorithmic methods for early prediction of septic shock have been developed using electronic health record data, with the goal of decreasing treatment delay. We extend a previously-developed method, using a gradient boosting algorithm (XG-Boost) to compute a time-evolving risk of impending transition into septic shock, by combining physiological data from the electronic health record with features obtained from natural language processing of clinical note data. We compare two different methods for generating natural language processing features, with the best method obtaining improved performance of 0.92 AUC, 84% sensitivity, 82% specificity, 49% positive predictive value, and a median early warning time of 7.0 hours. This degree of early warning is sufficient to enable intervention many hours in advance of septic shock onset, with the improved prediction performance of this method resulting in fewer false alarms and thus more actionable predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.