Abstract

After adopting the constitutive equations of the nonlocal elastic media in the form of Eringen, and making use of the Laplace transformation, the vibration governing equation of nonlocal elastic beam in the Kelvin media are established. Unlike classical elastic models, the stress of a point in a nonlocal model is obtained as a weighted average of the field over the spatial domain, determined by a kernel function based on distance measures. The motion equation of nonlocal elastic beam is an integral differential equation, rather than the differential equation obtained with a classical local model. Solutions for natural frequencies and modes are obtained. Numerical examples demonstrate the efficiency of the proposed method for the beam with simple boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.