Abstract

Here, we report a two-dimensional (2D) amorphous photonic structure (APS) discovered in the central layer of the periostracum of the mussel Perna canaliculus, based on field emission scanning electron microscopy, X-ray diffractometer, attenuated total reflection Fourier transform infrared spectroscopy, and fiber optic spectrometry combined with the image processing technology and pair correlation function analysis. This APS contains ~29% in volume of protein fibers embedded in a protein matrix. These fibers, with diameters of 103 ± 17 nm, are densely arranged and unevenly crimped. In addition, they are locally parallel with each other and exhibit short-range order with a nearest-neighbor distance of 189 nm. Interestingly, the APS is humidity-responsive with a vivid green structural color (~530 nm) in the wet state, which disappears in the dry state. Moreover, the APS is sandwiched by two dense layers in the periostracum, which is flexible in wet and can spontaneously or artificially deform into various shapes. We hope this APS may provide new inspirations for the design and synthesis of 2D amorphous photonic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.