Abstract

In this paper, we have studied the problem of two-dimensional transient convective flow and heat transfer in nanofluids in a quarter-circular-shaped enclosure using newly proposed nonhomogeneous dynamic mathematical model. The round wall of the enclosure is maintained at constant low temperature and the variable thermal condition on the bottom heated wall is considered, whereas the vertical wall is regarded as adiabatic. The enclosure is permeated by an inclined uniform magnetic field. The Galerkin weighted residual finite element method has been employed to solve the governing nondimensional partial differential equations. The result shows that 1- to 10-nm-sized nanoparticles are uniform and stable in the solution. The external magnetic field and its direction control the flow pattern of nanofluid significantly. The average Nusselt number increases significantly, as nanoparticle volume fraction, magnetic field inclination angle and Rayleigh number increase. Average Nusselt number of cobalt–kerosene nanofluid is much higher than other 17 types of nanofluids which are studied in the present analysis. The flow behaviors and the heat transfer rates of 18 types of nanofluids have been presented for the scientific and engineering community to become familiar with such nanofluids and apply them in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.