Abstract
The steady laminar natural convection of water in an inclined square cavity is investigated experimentally and analytically at temperatures in the neighbourhood of maximum density near 4°C. One hot wall of the square cavity is maintained at various uniform temperatures from 2 to 20°C and the opposing cold wall is kept at a uniform temperature of 0°C, while the other walls are thermally insulated. Photographs and analytical descriptions of the flow patterns, temperature profiles in the water layer and average heat-transfer coefficients are presented in this paper for various surface temperatures Th of the hot wall and inclination angles of the square cavity θ from 0° (heated from below) to 180° (heated from above) by 30° intervals. From this study it should be noted that the density inversion of water has a strong effect on the natural convection occurring in the inclined square cavity, and the average heat-transfer coefficient is a peculiar function of the surface temperature of the hot wall, unlike previous results for Boussinesq fluids without density inversion. Solutions of the governing equations for steady two-dimensional laminar natural convection are obtained numerically, and the results obtained agree reasonably well with the experimental ones in the ranges of 30° < θ ≤ 180° for Th > 8°C, 0° ≤ θ ≤ 120° for Th < 8°C, and 0° ≤ θ ≤ 180° for Th = 8°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.