Abstract

AbstractConvective flow and heat transfer of a Boussinesq fluid contained between two horizontal concentric cylinders is investigated under the effects of two driving mechanisms – an externally‐imposed temperature gradient across the annulus, and a uniform internal heat generation. Numerical results for flow field and temperature distribution are obtained in terms of four dimensionless parameters, namely the radius ratio, R, the Prandtl number, Pr, the Rayleigh number, Ra*, and the ratio, S, between the characteristic temperature induced by internal heating and the applied temperature difference between the boundaries. Depending on the value of S, the flow pattern is made up of either one or two vortices in each half cavity, and heat is transferred into or out of the cavity through the hot wall. In particular, for a certain value of the applied temperature difference, the hot wall apparently acts as a thermally‐insulated boundary, the internal heat is completely lost through the cold wall, and the fluid undergoes a transition from a bicellular to a unicellular flow regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.