Abstract

The optimal conditions of the catalytic activation of allophane were evaluated for possible use as a catalyst within a fluidized bed catalytic cracking unit (FCC). The physicochemical properties of natural allophane and activated allophane were studied by using an alkaline activating agent, followed by a hydrothermal treatment. For the characterization, analytical techniques were used: Fourier transform infrared spectroscopy, particle size, (BET) surface area, thermogravimetry (TGA), X-ray diffraction (XRD), chemisorption, X-ray fluorescence (XRF), atomic force microscopy (AFM), and chromatography. The catalytic evaluation was determined by the (MAT) micro activity test equipment constructed according to ASTM D-3907/D3907M-2019. In addition, the Navier–Stokes 3D equations (nonlinear partial derivatives) were studied, which allow studying molecular dynamics contributing substantively to chemical kinetics describing the process of decomposition of crude oil in thermal cracking, determining the maximum temperature at which it retains its properties through the action of heat.

Highlights

  • The fluidized catalytic cracking (FCC) process converts heavy cuts into light ones

  • The physicochemical characterization was established according to the BET surface area results of of the samples analyzed; in the case of natural allophane, the selected samples were 3, 4, and 15

  • The active sites were determined by means of the chemisorption test for natural and activated allophane

Read more

Summary

Introduction

The fluidized catalytic cracking (FCC) process converts heavy cuts into light ones. The products obtained include dry gases, liquefied petroleum gas, light oil, heavy oil and mainly gasoline, diesel, and kerosene. Allophane is a nanoporous micro clay with an undefined crystalline structure. It consists of organic material and has a high moisture content due to its hygroscopic property and extensive surface area. It adsorbs large amounts of water due to its hygroscopic property; its adsorption capacity can be in a range of [20, 50]% by weight of water [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.