Abstract

Trihalomethanes (THM), especially trichloromethane, play an important role in photochemical processes of the lower atmosphere, but the current knowledge of the known sources and sinks of trichloromethane is still incomplete. The trichloromethane flux through the environment is estimated at approximately 660 kt year(-1) and 90% of the emissions are of natural origin. Next to offshore seawater contributing approximately 360 kt year(-1) unknown soil processes are the most prominent source (approximately 220 kt year(-1)). This paper describes a new abiotic source of trichloromethane from the terrestrial environment induced by the oxidation of organic matter by iron(III) and hydrogen peroxide in the presence of chloride. Different organic-rich soils and a series of organic substances regarded as monomeric constituents of humus were investigated for their release of trichloromethene. The influence of iron(III), hydrogen peroxide, halide, and pH on its formation was assayed. The optimal reaction turn over for the representative compound catechol was 58.4 ng of CHCl3 from 1.8 mg of carbon applying chloride and 1.55 microg of CHBr3 from 1.8 mg of carbon applying bromide; resorcin and hydroquinone displayed similar numbers. Results presented in this paper pinpoint 1,2,4,5-tetrahydroxybenzene as playing a key role as intermediate in the formation pathway of the trihalomethanes. The highest THM yields were obtained when applying the oxidized form of 1,2,4,5-tetrahydroxybenzene as THM precursor. These findings are consistent with the well-known degradation pathway starting from resorcin-like dihydroxylated compounds proceeding via further hydroxylation and after halogenation finally ending up in trihalomethanes. In conclusion, Fenton-like reaction conditions (iron(III) and hydrogen peroxide), elevated halide content and an extended reaction time can be seen as the most important parameters required for an optimal THM formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.