Abstract

The development of systematic approaches to explore protein-protein interactions and dynamic protein networks is at the forefront of biological sciences. Nanopatterned protein arrays offer significant advantages for sensing applications, including short diffusion times, parallel detection of multiple targets and the requirement for only tiny amounts of sample. Atomic force microscopy (AFM) based techniques have successfully demonstrated patterning of molecules, including stable proteins, with submicrometre resolution. Here, we introduce native protein nanolithography for the nanostructured assembly of even fragile proteins or multiprotein complexes under native conditions. Immobilized proteins are detached by a novel vibrational AFM mode (contact oscillation mode) and replaced by other proteins, which are selectively self-assembled from the bulk. This nanolithography permits rapid writing, reading and erasing of protein arrays in a versatile manner. Functional protein complexes may be assembled with uniform orientation at dimensions down to 50 nm. Such fabrication of two-dimensionally arranged nano-objects with biological activity will prove powerful for proteome-wide interaction screens and single molecule/virus/cell analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.