Abstract
We study the problem of allocating m items to n agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a 1/e approximation factor of the objective, breaking the 1/2e^(1/e) approximation factor of Cole and Gkatzelis. Our main technical contribution is an extension of Gurvits's lower bound on the coefficient of the square-free monomial of a degree m-homogeneous stable polynomial on m variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.