Abstract

In this paper, we propose equations for narrowband-to-broadband (NTB) albedo conversion for glacier ice and snow for four types of satellite sensors: thematic mapper (TM), advanced very high resolution radiometer (AVHRR), moderate resolution imaging spectroradiometer (MODIS), and multi-angle imaging spectroradiometer (MISR). We do this on the basis of spectral albedos and incident spectral irradiances generated with radiative-transfer models of the (sub-)surface (a two-stream model) and the atmosphere, respectively. First, we establish equations for reference values of atmospheric components and the surface elevation. These equations describe measurements with root-mean-square differences of ∼0.016. We then show that the “reference equations” also perform well when total ozone and aerosol optical depth are changed with respect to the reference. The negative effect of humidity and elevation variations on the performance of the equations can be eliminated by adding a correction term. We argue that narrowband albedos are much less sensitive to variations in the incident spectral irradiance than broadband albedos. Hence, our conclusions about the effects of variations in atmospheric composition and elevation are also valid for equations for NTB conversion proposed in other papers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.