Abstract
A human nose-mimetic diagnosis system that can distinguish the odor of a lung cancer biomarker, heptanal, from human blood is presented. Selective recognition of the biomarker is mimicked in the human olfactory system. A specific olfactory receptor recognizing the chemical biomarker is first selected through screening a library of human olfactory receptors (hORs). The selected hOR is expressed on the membrane of human embryonic kidney (HEK)-293 cells. Nanovesicles containing the hOR on the membrane are produced from these cells, and are then used for the functionalization of single-walled carbon nanotubes. This strategy allows the development of a sensitive and selective nanovesicle-based bioelectronic nose (NvBN). The NvBN is able to selectively detect heptanal at a concentration as low as 1 × 10(-14) m, a sufficient level to distinguish the blood of a lung cancer patient from the blood of a healthy person. In actual experiments, NvBN could detect an extremely small increase in the amount of heptanal from human blood plasma without any pretreatment processes. This result offers a rapid and easy method to analyze chemical biomarkers from human blood in real-time and to diagnose lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.