Abstract
A new optical probe technique using a laser-trapped erbium oxide nanoparticle (size ~150 nm) is introduced that can measure absolute temperature with a spatial resolution on the size of the trapped nanoparticle. This technique (scanning optical probe thermometry) is used to collect a thermal image of a gold nanodot prepared with hole-mask colloidal lithography. A convolution analysis of the thermal profile shows that the point spread function of our measurement is a Gaussian with a FWHM of 165 nm. We attribute the width of this function to clustering of Er2O3 nanoparticles in solution. The scanning optical probe thermometer is used to measure the temperature where vapor nucleation occurs in degassed water (555 K), confirming that a nanoscale object heated in water will superheat the surrounding water to the spinodal decomposition temperature. Subsequently, the temperature inside the vapor bubble rises to the melting point of the gold nanostructure (~1300) where a temperature plateau is observed. The rise in temperature is attributed to inhibition of thermal transfer to the surrounding liquid by the thermal insulating vapor cocoon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.