Abstract

Cancer is the second-leading cause of death in the 21st century, where early detection and appropriate therapeutic interventions are two components essential for effective cancer management. Despite the availability of several conventional diagnostics and therapeutic agents, cancer mortality rates are rising due to an increase in the frequency of recurrence and metastasis in cancer patients. Therefore, tremendous efforts have been expended to address this significant clinical issue and improve therapeutic efficacy. In this regard, nanotheranostic is a multipotential single platform for both cancer diagnosis and treatment through enhanced aqueous solubility and bioavailability of the encapsulated agent, stimulus responsiveness, tumor-specific targeting ability, precise tumor imaging, and real-time drug delivery. Nonetheless, the translational success of nanotheranostic platforms is still in its infancy and requires more extensive research in the context of tumor heterogeneity, safety profile, and regulatory issues, which pose one of the largest technological limitations. The present review summarizes different nanotheranostic platforms and nanotheranostic candidates in clinical trials (AGuIX® , NBTXR3, Ferumoxtran, MM-398, EndoTAG-1, etc.), along with disadvantages and challenges to improving cancer diagnosis and treatment. Overall, the concept, platform, and technical knowledge of nanotheranostics are really helpful to academic and pharmaceutical researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.