Abstract
Nanotechnology, although not a new concept, has gained significant momentum in recent years. This stems partly from the realization that nanosystems have significantly different biological properties from large-sized systems (e.g. implants or microparticles) that could be used effectively to overcome problems in drug and gene therapy. In drug therapy, we face the problems of inefficacy or nonspecific effects; hence, nanosystems are being developed for targeted drug therapy. In gene therapy using non-viral systems, the main issues are relatively transient gene expression and lower efficiency than viral vectors. Research efforts have focused on understanding the barriers in gene delivery so that non-viral systems can be developed that are as effective as viral systems in gene transfection. Understanding the molecular mechanisms that underlie the interactions of nanosystems with the cell, their uptake properties and retention will be crucial for the successful development of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.