Abstract

Closed-field unbalanced and balanced magnetron sputtering was used to deposit nanocrystalline TiC (nc-TiC)/amorphous carbon (a-C) nanocomposite coatings with hydrogenated or hydrogen-free a-C matrix, respectively. The contents of Ti and C in the coatings have been varied over the full range of interest (7–45 at.% Ti) by changing the flow rate of acetylene gas or the locations of substrates relative to the center of C/TiC targets. Different levels of bias and deposition pressure were used to control the nanostructure. The nanocomposite coatings exhibit hardness of 5–35 GPa, hardness/ E-modulus ratio up to 0.15, wear rate of 4.8×10 −17 m 3/N m lap, friction coefficient of 0.04 under dry sliding and strong self-lubrication effects. The nanostructure and elemental distribution in the coatings have been characterized with cross-sectional and planar high-resolution transmission electron microscopy (HRTEM) and energy-filtered TEM. The influence of the volume fraction and size distribution of nc-TiC on the coating properties has been examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.