Abstract

BackgroundDue to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions. Biophysical manipulation of material surface topography to prevent bacterial adhesion is one promising approach. To this end, it is essential to understand the relationship between surface topographical features and bactericidal properties in order to develop antibacterial surfaces.ResultsIn this work a systematic study of topographical effects on bactericidal activity of nanostructured surfaces is presented. Nanostructured Ormostamp polymer surfaces are fabricated by nano-replication technology using nanoporous templates resulting in 80-nm diameter nanopillars. Six Ormostamp surfaces with nanopillar arrays of various nanopillar densities and heights are obtained by modifying the nanoporous template. The surface roughness ranges from 3.1 to 39.1 nm for the different pillar area parameters. A Gram-positive bacterium, Staphylococcus aureus, is used as the model bacterial strain. An average pillar density at ~ 40 pillars μm−2 with surface roughness of 39.1 nm possesses the highest bactericidal efficiency being close to 100% compared with 20% of the flat control samples. High density structures at ~ 70 pillars μm−2 and low density structures at < 20 pillars μm−2 with surface roughness smaller than 20 nm reduce the bactericidal efficiency to almost the level of the control samples.ConclusionThe results obtained here suggests that the topographical effects including pillar density and pillar height inhomogeneity may have significant impacts on adhering pattern and stretching degree of bacterial cell membrane. A biophysical model is prepared to interpret the morphological changes of bacteria on these nanostructures.

Highlights

  • Due to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions

  • In this paper we present a systematic study of topographical effect on bactericidal activity of nanostructured surfaces

  • We have observed the highest bactericidal activity with average pillar density of ~ 40 μm−2, which is comparable to that of the nanopillar structures on cicada’s wing. These results suggest that the density of the nanostructure plays an important role in the adhesion pattern and therefor the stretching degrees of the attached bacterial cells

Read more

Summary

Introduction

Due to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions. Biophysical manipulation of material surface topography to prevent bacterial adhesion is one promising approach. To this end, it is essential to understand the relationship between surface topo‐ graphical features and bactericidal properties in order to develop antibacterial surfaces. Antibacterial surfaces are highly desired in biomedical applications to prevent the adhesion of viable pathogenic bacteria on material surfaces that could proliferate to drug-resistant biofilms and cause chronic infections. Various microscale topographies such as ridges, ripples and grooves have been demonstrated to prevent or reduce bacterial adhesion and biofilm formation on the surface [5,6,7,8,9,10,11,12,13,14].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.