Abstract

We propose and develop a technique for designing a special class of nonmagnetic metamaterials possessing desired dielectric and optical properties over a broad frequency band. The technique involves the design of nanostructured metallodielectric materials (photonic crystals) with a special layered geometry where the metal content in each layer has to be determined using a fitting procedure. For illustration, we demonstrate the performance of our technique for tailoring metamaterials having epsilon-near-zero and on-demand refractive index (real or imaginary part) over a frequency band. One-, two-, as well as three-dimensional geometries have been considered. In the one-dimensional and two-dimensional cases, the results of semi-analytical calculations are validated by ab initio FDTD simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.