Abstract

Nanostructured materials can be engineered by the controlled assembly of several suitable nano-objects as the building blocks. While, materials properties are determined by their atomic and molecular constituents and structure, their functionalities emerge when the microstructure of these early ensembles is in the nanometer regime. The properties and functionalities of these ensembles may be different as their size grows from the nano-regime to the micron regime and bulk structures. Nanotechnology, offers a unique possibility to manipulate the properties through the fabrication of materials using the nano-objects as building blocks. Nanotechnology is therefore considered an enabling technology by which existing materials, virtually all man-made materials, can acquire novel properties and functionalities making them suitable for numerous novel applications varying from structural and functional to advanced biomedical in-vivo and in-vitro applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.