Abstract

: Tuberculosis is an ancient disease that is still present as a global public health problem. Our group has been investigating new molecules with anti-TB activity. In this context, inorganic chemistry has been a quite promising source of such molecules, with excellent results seen with ruthenium compounds. Nanostructured lipid systems may potentiate the action of drugs by reducing the required dosage and side effects and improving the antimicrobial effects. The aim of this study was to develop a nanostructured lipid system and then characterize and apply these encapsulated compounds (SCARs 1, 2 and 4) with the goal of improving their activity by decreasing the Minimum Inhibitory Concentration (MIC90) and reducing the cytotoxicity (IC50). The nanostructured system was composed of 10% phase oil (cholesterol), 10% surfactant (soy oleate, soy phosphatidylcholine and Eumulgin®) and 80% aqueous phase (phosphate buffer pH = 7.4). Good activity against Mycobacterium tuberculosis was maintained after the incorporation of the compounds into the nanostructured lipid system, while the cytotoxicity decreased dramatically, in some cases up to 20 times less toxic than the unencapsulated drug.

Highlights

  • Tuberculosis (TB) is an ancient infectious disease whose main causative agent is the bacteriumMycobacterium tuberculosis

  • The compounds were tested under two conditions, diluted in dimethyl sulfoxide (DMSO) and incorporated into the nanostructured lipid system

  • SCAR1 decreased 8-fold, SCAR2 22-fold and SCAR4 2-fold. These results show that this nanostructured lipid system is able to reduce the cytotoxicity of the complexes; this might be explained by the presence of cholesterol, which could promote interaction with the cellular membrane that consists of a phospholipid bilayer, in the composition of the microemulsion system

Read more

Summary

Introduction

Tuberculosis (TB) is an ancient infectious disease whose main causative agent is the bacterium. The search for new drug delivery systems has been very relevant in establishing more effective therapeutic alternatives that deliver drugs more safely and with minimized side effects One of these studies has been directed at microemulsions (MEs), which can be defined as transparent emulsions in which an oil is dispersed in (orderwise) an aqueous medium containing a surfactant, with or without a suitable co-surfactant system generating thermodynamically stable droplets and having an internal phase on the order of nanometers (nm). The ruthenium(II) complexes were incorporated into a nanostructured system consisting of soy phosphatidylcholine (SPC) and Eumulgin® (Castor oil polyoxyl-40-Hydrogenated), which are commonly used as surfactants [13,14], sodium oleate (OS) as a co-surfactant [15], cholesterol (CHO) as the oil phase and phosphate buffer pH 7.4 They were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC-27194 (MIC90) and tested on VERO cells (a normal eukaryotic cell) to determine their cytotoxicity (IC50)

Nanostructured Lipid System
Inorganic Compounds
Nanostructured Lipid System Preparation
Nanostructured Lipid System Characterization
Preparation of the Coordination Compound-Loaded Nanostructured Lipid System
In Vitro Cytotoxic Activity
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.