Abstract

Based on a W18O49 nanowire template, iron-substituted W18O49 nanowires and FeWO4 ferberite flowers have been generated by using mixed FeCl3 and WCl6 at different ratios in a simple solvo-thermal process employing cyclohexanol as the solvent. Detailed characterization by electron microscopy and spectroscopy has shown that increasing the FeCl3 concentration during solvo-thermal synthesis promotes a morphological evolution from the long one-dimensional nanowires of the precursor through short Fe-containing W18O49 nanowires and two-dimensional platelets to three-dimensional flowers with sixfold symmetry. The driving force for these transformations is attributed to Fe inclusion in the W18O49 template at low Fe concentrations, which introduces internal stresses to the W18O49 nanowires. At high Fe concentrations, close to the stoichiometric composition of FeWO4, the formation of the flower is triggered by the intrinsic sixfold symmetry of crystalline ferberite, via a combination of initial nanoblade nucleation a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.