Abstract
Hybrid hemoglobins were prepared in which cobalt was substituted for the heme iron in either the alpha or beta subunits. Transient optical absorption spectra were measured at room temperature for these hybrids at time intervals between 0 and 50 ms following photodissociation of the carbon monoxide complex with 10-ns laser pulses. The cobalt porphyrins do not bind carbon monoxide, making it possible to investigate the time-resolved response of the cobalt-containing subunits to photodissociation of carbon monoxide in the iron-containing subunits. At the same time the response of the iron-containing subunits to the photolysis event can be studied, permitting an independent determination of the kinetics of ligand rebinding and conformational changes in the alpha and beta subunits of an intact tetramer. The data were analyzed by using singular-value decomposition to obtain the kinetic progress curve for ligand rebinding, the deoxyheme and cobalt porphyrin spectral changes, and the time course of these spectral changes. The geminate rebinding kinetics following photodissociation of alpha(Co)2 beta(Fe-CO)2 were very similar to those found unsubstituted hemoglobin, alpha(Fe-CO)2 beta(Fe-CO)2, indicating equivalence of the geminate kinetics for alpha and beta subunits within the R-state tetramer. The results for alpha(Fe-CO)2 beta(Co)2 were consistent with this conclusion, even though the analysis was complicated by the presence of comparable populations of R- and T-state species. Comparison of the deoxyheme spectral changes and relaxation times among the three molecules indicated that both alpha and beta subunits contribute to the deoxyheme spectral changes that signal tertiary and quaternary conformational changes in the unsubstituted tetramer. The response of the cobalt porphyrins to photodissociation was similar in the two hybrids. No structural changes were detected in the cobalt-containing subunits until the second tertiary conformational change in the iron-containing subunits observed at 1-2 microseconds. Much larger structural changes, as judged by the amplitude of the spectral changes, occurred in the cobalt-containing subunits concomitant with the R----T quaternary change at about 20 microseconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.