Abstract

Rotational freedom of the single tryptophan residue in human plasma apolipoproteins C-I (apo C-I) and C-II (apo C-II) was investigated by oxygen quenching and lifetime-resolved anisotropies. The tryptophan in both apo C-I and C-II was highly accessible to oxygen quenching. The tryptophan residue in both apo C-I and C-II and their sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC) complexes displayed significant motional freedom on the nanosecond time scale. Lifetime-resolved anisotropies of tryptophan residues under conditions of oxygen quenching revealed an increase in the amplitude of the segmental motions at 40 °C as compared to that at 5 °C. It was concluded from these studies that both the apoprotein C-I and C-II are highly flexible molecules, and that the nanosecond motions of the tryptophan residue are sensitive to the fluidity of its environment in both SDS and DMPC Complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.