Abstract

AbstractThe large surface area of porous silicon provides numerous sites for many potential species to attach, which makes it an ideal host for sensing applications. The average pore size can be easily adjusted to accommodate either small or large molecular species. When porous silicon is fabricated into a structure consisting of two high reflectivity multilayer mirrors separated by an active layer, a microcavity is formed. Multiple narrow and visible luminescence peaks are observed with a full width at half maximum value of 3 nm. The position of these peaks is extremely sensitive to small changes in refractive index, such as that obtained when a biological object is attached to the large internal surface of porous silicon. We demonstrate the usefulness of this microcavity resonator structure as a DNA optical biosensor which displays appropriate sensitivity, selectivity, and response speed. A probing strand of DNA is initially immobilized in the porous silicon matrix, and then subsequently exposed to its sensing complementary DNA strand. Red-shifts in the luminescence spectra are observed and detected for various DNA concentrations. The spectral shifts confirm successful recognition and binding of DNA molecules within the porous structure. Detailed device fabrication procedures and the results of extensive testing will be presented. The detection scheme has also been extended to include the detection of viral DNA, proteins, and potentially bacteria. This work will lead to the development of a “smart bandage”, where the detection of bacteria or viruses can be diagnosed and an antibiotic treatment can be recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.