Abstract

This communication reports on the study of microphase separation of well-defined mixed poly(tert-butyl acrylate) (PtBA)/polystyrene (PS) brushes on silica nanoparticles under equilibrium melt conditions. Mixed PtBA/PS brushes were synthesized from an asymmetric, difunctional initiator-terminated self-assembled monolayer by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization. Two symmetric PtBA/PS mixed brush samples with different molecular weights were used in this study and were thermally annealed in vacuum at 150 degrees C. For the mixed brushes with number average molecular weights (Mn) of 24 200 g/mol for PtBA and 23 000 g/mol for PS, two glass transitions were observed in the differential scanning calorimetry analysis. Transmission electron microscopy study showed that the two grafted polymers underwent a lateral microphase separation, forming a random worm-like pattern with a feature size of approximately 10 nm on the silica particle surfaces. In contrast, the mixed brushes with a Mn of 10,400 g/mol for PtBA and 11,900 g/mol for PS did not microphase separate. Although the mixed brushes are on curved substrates, this work provides results consistent with the theoretical prediction that symmetric mixed homopolymer brushes undergo lateral rather than vertical phase separation under equilibrium melt conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.