Abstract
<p>Uranium-Lead dating of zircon remains one of the most widely utilized and most reliable temporal records throughout Earth history. This stems from the mineral’s widespread occurrence, pristine zircon being both physically and chemically robust, and the ability to evaluate the presence of open system behavior (i.e. “concordance”) through comparison of the independent <sup>238</sup>U→<sup>206</sup>Pb, <sup>235</sup>U→<sup>207</sup>Pb, and <sup>232</sup>Th→<sup>208</sup>Pb decay chains. The phenomenon of discordance is well documented in zircon, and is typically (though not always) associated with radiation damage accumulation and Pb-loss. Despite a long history of research, the nanoscale controls on Pb mobility and Pb loss (i.e. the relative rates of radiation damage, annealing, and Pb diffusion) remain poorly defined. The unique characterization capabilities of atom probe tomography (APT) provide a novel means to study U-Pb systematics on the scale of the radiation damage, annealing and diffusion processes. APT studies have documented nanoscale heterogeneity in trace elements, Pb, and Pb isotope ratios, and correlated the <sup>207</sup>Pb/<sup>206</sup>Pb ratios within clusters to transient thermal episodes in the history of a zircon.</p><p> </p><p>This work seeks to provide a foundation for multi-scale U-Pb characterization, including how differential Pb mobility at the nanoscale can influence micron- to- grain-scale U-Pb systematics. Historically, concordia diagrams have used simple Pb-loss models to extract temporal information about the timing of Pb mobility/loss; however, these models assume <sup>207</sup>Pb and <sup>206</sup>Pb are uniformly disturbed within a grain and lost in equal proportions at the time of Pb loss. Our previous studies suggest that radiogenic Pb can be concentrated and immobilized in nanoscale clusters, leading to differential retention of Pb in clusters vs. matrix domains, and requiring a more complex treatment of isotopic shifts during any post-clustering Pb loss. This “multi-domain element (Pb) mobility” (MDEM or MDPM) influences subsequent Pb-loss trajectories on concordia diagrams, manifesting in systematic offsets for discordia as a function of the zircon crystallization age, the timing of cluster formation, and the timing of Pb mobility. These results highlight that (1) traditional interpretations of discordia in the presence of cryptic nanoscale clustering can lead to inaccuracies, and (2) multi-scale U-Pb characterization offers a means to both study discordance and to extract additional temporal information from zircon with otherwise ambiguous and/or complex Pb-loss patterns.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.