Abstract

During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44–50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266–2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307–2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G+/G− splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165–184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G+ and G− peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current–voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed.

Highlights

  • Due to their exceptional properties, carbon nanotubes (CNT) have been the focus of intense research in several fields from spintronics to biosensing [1,2]

  • Using jointly Raman spectroscopy imaging and current sensing atomic force microscopy (AFM) (CS-AFM), we aim at investigating the properties of dielectrophoresis-deposited carbon nanotubes in order to find out whether or not the defect concentration in carbon nanotubes increases at the CNT/electrode interface, evaluating at the nanoscale level the quality of the electrical contact between the nanotubes and the electrodes (Ohmic or not) and verifying that a good alignment can be achieved along the channel

  • This might be possible if the CNT/electrode contact is buried below this insulating layer, and a corresponding current response can be detected along the CNTs

Read more

Summary

Introduction

Due to their exceptional properties, carbon nanotubes (CNT) have been the focus of intense research in several fields from spintronics to biosensing [1,2]. We undertake the study of semiconducting single-walled CNTs that have been aligned and deposited along two pre-structured palladium electrodes with a channel separation of 2 μm. Using jointly Raman spectroscopy imaging and current sensing AFM (CS-AFM), we aim at investigating the properties of dielectrophoresis-deposited carbon nanotubes in order to find out whether or not the defect concentration in carbon nanotubes increases at the CNT/electrode interface, evaluating at the nanoscale level the quality of the electrical contact between the nanotubes and the electrodes (Ohmic or not) and verifying that a good alignment can be achieved along the channel. In addition to the defect concentration obtained from the intensity ratio of the D/G band, from Raman spectroscopy, the CNT diameter was estimated using the splitting of the G− and G+ peaks [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.