Abstract
The physical crosslinking of polymeric binders through coordination chemistry significantly improves the electrochemical performance of silicon-based negative electrodes. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy is used to probe the nanoscale morphology of such electrodes. This technique reveals the homogeneous coordination of carboxylated binder with Zn cations and its layering on the silicon surface. The solid electrolyte interphase (SEI) formed after the first cycle is denser with Zn-coordinated binder and preferentially observed on binder-depleted zones. The superiority of coordinated binders can be attributed to their capacity to better stabilize the electrode and the SEI layer due to improved mechanical properties. This results in a lower SEI impedance, a higher first cycle coulombic efficiency, and a 40% improvement of capacity retention after 50 cycles for highly loaded electrodes of over 6mAhcm-2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.