Abstract

An experimental investigation of the surface topography, nanoindentation hardness, and nanowear characteristics of carbon thin films was conducted using atomic force and point contact microscopy. Hydrogenated carbon films of thickness 5, 10, and 25 nm were synthesized using a sputtering technique. Atomic force microscopy images obtained with silicon nitride tips of nominal radius less than 20 nm demonstrated that the carbon films possessed very similar surface topographies and root-mean-square roughness values in the range of 0.7–1.1 nm. Nanoindentation and nanowear experiments performed with diamond tips of radius equal to about 20 nm revealed a significant enhancement of the hardness and wear resistance with increasing film thickness. High-resolution surface imaging indicated that plastic flow was the dominant deformation process in the nanoindentation experiments. The carbon wear behavior was strongly influenced by variations in the film thickness, normal load, and number of scanning cycles. For a given film thickness, increasing the load caused the transition from an atomic-scale wear process, characterized by asperity deformation and fracture, to severe wear consisting of plowing and cutting of the carbon films. Both the critical load and scanning time for severe wear increased with film thickness. Below the critical load, the wear rate decreased with further scanning and the amount of material worn off was negligibly small, while above the critical load the wear rate increased significantly resulting in the rapid removal of carbon. The observed behavior and trends are in good qualitative agreement with the results of other experimental and contact mechanics studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.