Abstract

A SrRuO3 thin film has been widely used as a metal electrode in electronic devices based on transition metal oxides, and hence it is important to understand its thermal transport properties to minimize a thermal degradation problem during the device operation. Using the time-domain thermoreflectance measurement technique, we investigate the cross-plane thermal conductivity of the SrRuO3 thin films with a thickness variation from 1 μm to 8 nm. We find that the thermal conductivity is reduced from about 6 W m−1 K−1 for the 1 μm thick film to about 1.2 W m−1 K−1 for the 8 nm thick film, and attribute this behavior to the boundary scattering of thermal carriers which originally have the mean free path of about 20 nm in a bulk state. Also, we observe a clear dip behavior of the thermal conductivity in the intermediate thickness around 30 nm which suggests an existence of a strong scattering source other than the film boundary. We explain this result by considering an additional interfacial scattering at the tetragonal-orthorhombic phase boundary which is formed during the strain relaxation with an increase of the film thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.