Abstract

Crystal polymorphism selection during synthesis is extremely challenging. However, promoting the formation of a specific metastable polymorph enables modulation of the functional properties of phase-change materials through alteration of the relative abundance of various polymorphs. Here, we demonstrate the stabilization of the superionic β-Cu2Se phase under ambient conditions and the direct control over the relative ratio between the α-Cu2Se and β-Cu2Se polymorphs in (x)CuGaSe2/(1-x)Cu2Se composites using CuGaSe2 nanoseeds. We found that the small lattice mismatch between β-Cu2Se (cubic) and the ab plane of tetragonal CuGaSe2 nanoseeds promotes the formation of low-energy coherent CuGaSe2/β-Cu2Se interfaces, leading to preferential stabilization of β-Cu2Se. Astonishingly, the hierarchical microstructure of the resulting composites enables a remarkable decoupling of charge and heat transport, which is manifested by a breakdown of the Wiedemann-Franz law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.